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Abstract: In this study, 3-dimensional (3-D) enhanced brain-function-map generation and
estimation methodology is presented. Optical signals were modelled in the form of numerical
optimization problem to infer the best existing waveform of canonical hemodynamic response
function. Inter-channel activity patterns were also estimated. The estimation of activation
of inter-channel gap depends on the minimization of generalized cross-validation. 3-D brain
activation maps were produced through inverse discrete cosine transform. The proposed algorithm
acquired significant results for 3-D functional maps with high resolution, in comparison with
that of 2-D functional t-maps. A comprehensive analysis by exhibiting images corresponding to
several layers has also been appended.
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1. Introduction

Optical brain imaging (OBI) has been situated into a favourable position among other neuroimag-
ing modalities because it is an effective, painless, and economical way for measuring/examining
the functionality of the human brain [1–3]. It provides functional information on the human
brain up to a certain level that used to be possible only through invasive methodologies [4–7].
Near-infrared spectroscopy (NIRS) is an emerging neuroimaging modality under the umbrella of
OBI techniques. Jobsis [8] presented the possibility of examining the oxygen level of human
brain tissue by utilizing near infrared (NIR). Nowadays, this concept has grown into the form
of functional near-infrared spectroscopy (fNIRS). In such systems, NIR light is thrown on the
surface of head by a source optode. These light photons then travel through the scalp, skull,
and different brain layers. These photons are either absorbed or scattered or reflected back,
depending on the attributes of different brain layers. The absorption of these NIR light photons
depend on two important chromophores in the blood, namely, oxyhaemoglobin (HbO2) and
deoxyhaemoglobin (Hb) [9]. Modified Beer–Lambert law (MBLL) is utilized to estimate the
relative concentration changes of HbO2 and Hb in a specific brain area [10,11]. Advanced
fNIRS systems, like frequency and time-domain instruments, have the ability to determine the
absolute changes of HbO2, Hb, and total haemoglobin (HbT) [12]. The ease of applying an
fNIRS probe has also enabled us to perform a wide variety of experiments on human adults,
animals, and infants [13–15]. It is usual practice to configure a source–detector pair 1–4 cm
apart, depending on the nature of experiment [16]. The source–detector configuration is very
important for analysing the activation area up to a certain resolution but is constrained by the
number of available source–detector optodes.
fNIRS systems may have several advantages, but at the same time, they also have some

limitations. These limitations include limited spatial resolution, modest penetration depth, hair
absorption, physiological noises, and motion artefacts [17–19]. The limited spatial resolution of
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an fNIRS system, which is in the scale of centimetres, is due to several factors [20]. The general
perception is that spatial resolution is proportional to half of the width of the source–detector
separation (i.e., a few centimetres) [19,21]. A higher spatial resolution for any neuroimaging
instrument is required in different fields of science and medicine [3].
Several different types of fNIRS systems have been developed to date. Initially, Jobsis’s

conception led to the development of continuous-wave (CW) fNIRS system [22–24]. These CW
systems cannot absolutely determine the concentration changes of HbO2 and Hb, which is their
major drawback, in addition to their modest penetration depths and hypersensitivity to superficial
layers [25]. To overcome these limitations, time-resolved and frequency-domain systems, which
enable us to determine the absolute concentration changes of HbO2 and Hb, were developed.
Time-resolved systems use picosecond pulses of NIR light photons, which pass through layers of
human brain. Because a time gap is given so that all photons are received by a nearby detector
[26,27], the time resolutions of these systems are relatively poor. Additionally, while these
systems inherently result in a deeper penetration of NIR light photons and better spatial resolution,
there are also various limitations, for example, huge size, higher cost, and low speed. These
limitations, especially the huge size, constrain time-resolved systems from being frequently used
in laboratory experiments [25]. The demand for such systems in clinical applications is high, and
therefore, researchers are developing and optimizing the design of such systems, so that they may
become portable and have high temporal resolution. Frequency-domain devices, on the other
hand, use modulated frequency and relative change in intensity and phase shift to determine the
nature of activation [24,28]. These systems likewise have certain disadvantages: the penetration
depth is low, quantification of optical parameters is not attainable, and experimentation is
relatively difficult [25]. Although there are several hurdles that need to be addressed, fNIRS is
still in a favourable position among other neuroimaging modalities.

In the past, various methodologies to enhance the spatial resolution and to minimize the depth
error in constructed images have been presented. A comprehensive approach for minimizing the
depth errors in diffuse optical tomography’s (DOT) reconstruction is to apply a spatially variant
regularization parameter [29–31]. Another approach is depth-compensated optical imaging, which
modifies the depth variant sensitivity matrix directly rather than modifying the regularization
parameter [32]. Spatial resolution is a discremental feature of neuroimaging modalities. The
enhancement of spatial resolution enables better localization of neural activity. For instance, EEG
has low-source-localization problems. A frequently used program, LORETA, connects 10–20
and 10–10 standard positions to the Talairach coordinate system [33]. These approaches could
possibly enhance the spatial resolution up to a few centimetres. High-density diffuse optical
tomography (HD-DOT) has a much better spatial resolution. The first experimentally resolved
OBI data reconstruction in HD-DOT has a spatial resolution in the order of several millimetres
[34]. Additionally, Yamamoto et al. [35] reported that high-density probe arrangement can
effectively enhance the spatial resolution and discussed the effect of fibre arrangement on the
extent of absorption change calculated via conventional mapping methodology. Several other
researchers have presented empirical and simulation results obtained by addressing the issue of
spatial resolution of the fNIRS system [18,36,37]. Among these approaches, bundled approaches
have attracted several researchers with improved results. In such schemes, multiple sources
are placed a few millimetres apart to increase the number of channels that enhance the spatial
resolution [38].

OBI systems provide functional information of the path between source and detector, but it is a
usual practice to relate this information with the midpoint. Thus, the information related to other
points in the path and/or the points in between two channels cannot be estimated. In other words,
we can say the configuration of OBI systems has a constraint in that these midpoints cannot be
estimated directly. In addition to this, trial-to-trial variability in measured data is still a bottleneck
that needs to be addressed. The extensive use of OBI systems is possible if an appropriate
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methodology that can estimate inter-point activation through filling these gaps is developed. At
the same time, it is important to remove/understand the root cause of trial-to-trial variability.
Some past studies have presented algorithms that can estimate activity at unknown gaps [3,39],
such as empirical orthogonal function [40] and singular spectrum analysis [41,42]. However,
these methods have some advantages and disadvantages with certain constraints. Therefore, an
algorithm or methodology that can estimate a full 4-D (i.e., 3-D spatial and time) spatio-temporal
map on activation points of the source–detector pair and other unknown points between these
points is required. However, a methodology with such properties has not been reported until
now. In this study, we demonstrate a methodology that can estimate such maps with 3-D spatial
information and at each sample time.

2. Materials and methods

2.1. Participants

In this study, a group of 9 healthy participants (6 male, 3 female) with a mean age of 30 (range:
20 to 45) years were examined. The criteria for selection were as follows:

• All right-handed participants with no former and present neuronal (based on the system
check list 90-R) and grievous internal disorder (as specified by self-assessment) were
included.

• Participation was after discussion with their guardians and experimental team.

• No pregnancies were diagnosed in the female participants.

• Subjects were also rewarded financially for their inclusion.

The study was accomplished in manners conforming to the latest version of the Declaration
of Helsinki, and the study was approved by the National Research Ethics Committee (Pusan
National University).

2.2. Task

For this study, each control subject visited the lab where the experiment was performed. At the
commencement of the experimentation, the participants were acquainted with the experiment
process and with the directives. The experiment was composed of 5 blocks of activity, separated
by 30 s of rest in between. In the resting periods, the participants were directed to sit motionless
and relax. For activity sessions, they were directed to tap their right index finger for 10 s in a
pleasant rhythm. Moreover, a 10 s baseline was added before the first task segment (Fig. 1).

Fig. 1. One complete dataset over a span of 210 s, consisting of six rest periods and five
task periods detected by fNIRS from C3 region of brain. First rest period was 10 s and the
remaining were of 30 s each. Yellow blocks represent 10 s activity periods. The x- and
y-axes show time (in seconds) and activation, respectively.



Research Article Vol. 10, No. 9 / 1 September 2019 / Biomedical Optics Express 4687

The subjects were not told about the durations of the task and rest sessions. They were advised
to listen for an alarm and to watch out for a visual display that indicates the start and end of
the task session. By doing this, the subjects have to be attentive throughout the experiment
without feeling any habituation. In addition, visual monitoring of each subject is done to make
sure that each subject has performed all tasks and rest sessions properly. Each participant was
positioned on a comfortable chair with head rest in a dark room, and a load of optic fibres was
supported with a hook attached to an fNIRS system. The experiment was a finger-tapping task,
and subjects were advised not to have any unrequired motions, to avoid motion artefacts. The
subjects were hairless or had very short and straight hair. Mathematically, each activity period
can be equated with a rectangular provoked wave, the extent of which is zero during rest and one
during activity. We used such provoked rectangular waves to analyse phase synchronization and
coherence between the haemoglobin and provoked signals.

2.3. Instrumentation

The fNIRS signal was inscribed with a multi-channel NIRS system equipped with 32 optodes
(fibre optic probes). Each optode can even be used as a source and as a detector. The device
ejects light at 2 different wavelengths: 760 nm and 830 nm. One source and 24 detectors were
placed on each subject’s skull in the left motor cortex, according to the International 10–20
system, with each detector receiving light from one light source. The path between each detector
and source is termed as an independent channel. We used 2.5 cm source–detector distance in
the first layer and a distance of 0.5 cm between succeeding detectors. There were 24 channels
(characterized by source–detector distances of 2.5 cm, 3 cm, and 3.5 cm): (1, 13, 4, 16, 7, 19,
10, 22), (2, 14, 5, 17, 8, 20, 11, 23), and (3, 15, 6, 18, 9, 21, 12, 24), respectively, in the left
hemisphere, with their positions illustrated in Fig. 2. The dataset for each channel contains about
380 time-points, corresponding roughly to 210 s. The sampling frequency was 1.81Hz. The
optodes were set using the wave guard cap and secured using a dedicated black fabric cap.

2.4. Reconstruction of haemodynamics from optical data

The fundamental property during interaction between tissues and light is absorption. This
phenomenon of light absorption by the brain tissues is modelled by the Beer–Lambert law and
mathematically written as

Iλ = Iλ0 × e−µ
λ
a ×Lλ , (1)

where Iλ is the detected intensity, Iλ0 is the initial intensity, µλa is the absorption coefficient,
and Lλ is the differential path length. However, the absorption coefficient is not sufficient for
describing the attenuation of light intensity in case of cortical interactions. Because cortical
tissues are a highly scattered medium of NIR light, a second coefficient, µλs , called a scattering
coefficient, is then introduced. The Beer–Lambert law defined in Eq. (1) is then written as
follows:

Iλ = Iλ0 × e−(µ
λ
a +µ

λ
s )×Lλ . (2)

Chromophore concentrations are fundamentally known to change with respect to time in biological
tissues because of blood flow. Thus, for each instant tn, the Beer–Lambert Eq. (2), called modified
Beer–Lambert law (MBLL) [22], can be written as follows:

Iλ(tn) = Iλ0 × e−([c(tn)]×ελ×d×Lλ+G), (3)

where scattering contribution µλs × L has been grouped into the term G, ελ is the extinction
coefficient of blood tissue, and the differential path length factor d has been used to measure
the certain possibility that photons travel paths that are longer than the separation of the
source–detector pair because they diffuse multiple times inside the medium, with a small amount
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Fig. 2. Green circle represents the source, yellow squares represent 24 channels (with
respective numbers), and grey circles represent reference points. The channels are defined
as the midpoint of the source from each detector. The optodes were set on the subject’s
left hemisphere using C3 and Cz of the International 10–20 system as the reference points.
The distance of the eight nearest detectors from the source and the distance between the
detectors are indicated by blue and black lines, respectively. The magnified part on the left
side illustrates the actual detectors (blue circles) and source (green circle) that form the
yellow channels for measurement.

reaching up to the detector. Thus, we can write the modified Beer–Lambert Law in Eq. (3) as
follows:

Aλ = ln
(
Iλ0
Iλ

)
= [c(tn)] × ελ × d × Lλ + G, (4)

where Aλ is the optical density. It can also be written as

∆Aλ = [∆c(tn)] × ελ × d × Lλ + G. (5)

Considering two different chromophore concentrations to change (HbO2 and Hb) at two different
wavelengths λ1, and λ2 and the scattering term G to be constant, we obtain

∆Aλj = [ε
λj
HbO2
∆HbO2 + ε

λj
Hb∆Hb] × d × Lλj + G, (6)

where j= 1 and 2, and ελj
HbO2

and ελj
Hb are the extinction coefficients of HbO2 and Hb, respectively.

Rewriting Eq. (6) for each wavelength, i.e., λ1 and λ2, we now have
∆Aλ1 = [ελ1HbO2

∆HbO2 + ε
λ1
Hb∆Hb] × d × Lλ1 + G

∆Aλ2 = [ελ2HbO2
∆HbO2 + ε

λ2
Hb∆Hb] × d × Lλ2 + G

. (7)

Being a linear system of two equations with two unknowns, the system can be easily solved using
simple linear algebra. The rearrangement of system of Eq. (7) through algebra results in the
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following:

∆HbO2(tn) =

(
ελ1HbO2

∆Aλ2 (tn)
Lλ2

)
−

(
ελ2Hb

∆Aλ1 (tn)
Lλ1

)
d(ελ1Hb × ε

λ2
HbO2
− ελ2Hb × ε

λ1
HbO2
)

(8)

and

∆Hb(tn) =

(
ελ2HbO2

∆Aλ1 (tn)
Lλ1

)
−

(
ελ1Hb

∆Aλ2 (tn)
Lλ2

)
d(ελ1Hb × ε

λ2
HbO2
− ελ2Hb × ε

λ1
HbO2
)
, (9)

where ∆HbO2(tn) and ∆Hb(tn) are relative concentration changes of HbO2 and Hb, respectively,
tn is the discrete time, and ∆Aλ1 (tn) and ∆Aλ2 (tn) are the optical density variations at tn-th sample
time with particular wavelengths λ1, and λ2, respectively.

2.5. Removal of systemic physiological signal interference

Conventionally, it is presumed that haemodynamic changes related to cortical activation contain
certain physiological signals. Previous studies have demonstrated that the systemic physiological
signal from superficial layers can exponentially attenuate the NIR light emitted from the source.
The major contributors responsible for physiological intervention include heartbeat, respiration,
low-frequency oscillations includingMayerwaves, and task-related changes in systemic physiology.
The raw data of CW-fNIRS have shown that, even under resting conditions, optical signals have
trial-to-trial variability [43,44]. This variation could be observed between intra-subject and
inter-subject trial repetitions. These variations cause fluctuations and unrepeatability in measured
haemodynamic response in the different brain regions, excluding the cerebrospinal fluid (CSF),
and are generally categorized into two types. The first are fluctuations whose conventional
patterns are systemic and that are associated with periodic physiological activities, such as
arterial pulse oscillations (∼1Hz) and respiration rhythm (0.2–0.3Hz). The second are relatively
low-frequency waves (frequency < 0.05Hz), of which the temporal pattern has a different profile
in each brain region. Both the faster and the slower variations of the Hb oxygenation state
sometimes have amplitudes comparable to those of the signals evoked by functional activity.
Thus, it is very important to determine these physiological signals, so that they can be carefully
removed. The cardiovascular pulsation, especially, generates fast-oscillating waves, which are
definitely different from the signal generated as a result of the task and can be filtered out through
specific blockers/filters. Similarly, respiration rhythm could be easily removed in case the task
during experimentation does not contribute much to variation of respiration frequency. The
high-pass and low-pass filtering of fNIRS data are possible through NIRS-SPM software [45]
with cut-off frequencies of 0.01Hz and 0.15Hz, respectively. Some researchers have shown that
bandpass filters of bandwidth [0.6–2.0] Hz for cardiac pulsation, [0.15–0.4] Hz for respiration
artefacts, and [0.05–0.2] Hz for low-frequency noise can be used [46]. Another possible way is
to define a cost function composed of periodic regressors that need to be estimated, in addition to
the evoked response, as described in Eq. (13). Nelder–Mead simplex iterations are later applied
to estimate the amplitudes and frequencies of periodic waves that exist in measured data. In this
study, we have implemented methods described in Kamran et al. [47,48] and mentioned in this
manuscript in equations (10–14).

2.6. Haemodynamic response function

The most crucial part is the modelling of evoked response related to task–rest sessions. A
canonical haemodynamic response model is usually used to represent impulse response. The
canonical haemodynamic response function (cHRF) is composed of three gamma functions:
the first representing main peak of response, the second representing post-stimulus undershoot
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[49], and the third to representing early deoxygenation that is reported in several studies in past
[50–52]. Consequently, the mathematical form of cHRF is as follows:

h(tn) =
tα1−1n × βα11 × e−β1tn

Γ(α1)
−

tα2−1n × βα22 × e−β2tn

6Γ(α3)
−

tα3−1n × βα33 × e−β3tn

8Γ(α3)
, (10)

where h is the cHRF, α1, α2, and α3 are the delays of the response, undershoot, and initial
dip, respectively, β1, β2, and β3 are the dispersions of the response, undershoot, and initial dip,
respectively, and Γ represents the gamma distribution. To evaluate the predicted response related
to a particular experimentation, cHRF is convolved with experimental paradigm into

ỹHbo2 (tn) = a0 + a1[h(tn) ∗ u(tn)], (11)

where ỹHbo2 (tn) is the haemodynamic response function (HRF), u is a function describing the
onset of activity and rest sessions, and a0 and a1 are the base line and activity strength parameters,
respectively.

2.7. Neural activation model: a formulation

Task-related activations are constructed as original time courses ∆HbO2 of fNIRS channels
yi

Hbo2 (tn), i = 1, 2, . . . . . . , 24 (i represents the channel number) as yi
Hbo2 (tn) = ỹi

Hbo2 (tn) + γ
i(tn),

where
γi(tn) = ac sin(2πfctn) + ar sin(2πfrtn) + am sin(2πfmtn) + εi(tn), (12)

where yi
Hbo2 (tn) is the measured HbO2 time series at ith channel, ac, ar, am, fc, fr, fm are the

amplitudes and the frequencies, respectively, of the cardiac, respiratory, and Mayer waves,
respectively, and εi(tn) is the zero-mean Gaussian noise. Because fNIRS signal measured
through any region of brain has trial-to-trial variability and also varies among subjects, the
neuro-activation process is therefore formulated in the form of a cost function [50] as

J =
N∑

n=1
[yi

Hbo2 (tn) − {ỹ
i
Hbo2 (tn) + γ

i(tn)}]
2. (13)

The variables in the model have been constrained between upper and lower values, so that the
algorithm can also detect the variability among subjects and inter-task activations.

2 ≤ α1 ≤ 10, 0 ≤ ac ≤ 2

6 ≤ α2 ≤ 20, 1 ≤ α3 ≤ 3

0 ≤ ar ≤ 2, 0.2 ≤ β1 ≤ 2

0 ≤ β2 ≤ 1.5, 0.9 ≤ β3 ≤ 2.9

0 ≤ am ≤ 2, 0.5 ≤ fc ≤ 1.5

0 ≤ a0 ≤ 20, 0.2 ≤ fr ≤ 0.3

0 ≤ a1 ≤ 15, 0.09 ≤ fm ≤ 0.1



. (14)

The optimal values of the free parameters (α∗1, α∗2, β∗1, β∗2, a∗o, a∗1, a∗ c, a∗m, a∗ r, f∗ c, f∗ r, f∗m)
are estimated using an improved version of the simplex method, later named as Nelder–Mead
simplex method (NMSM). The iteration of NMSM comprises three major steps, namely, ordering,
centroid, and transformation. The details about the algorithm can be found in [53,54].
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2.8. Functional brain maps and statistical significance

The estimation of functional activation and its localization from measured optical data comprises
an additional challenge due to physiological and systemic noises plus trial-to-trial variability.
Therefore, parameters are allowed to obtain variable values depending on the signal acquired.
Let us suppose the optimal values of the parameters are found through the algorithm stated in the
previous section, such that, mathematically,

yi∗
Hbo2 (tn) = a∗0 + a∗1[h(tn) ∗ u(tn)] + a∗c sin(2πf ∗ctn) + a∗r sin(2πf ∗rtn)

+ a∗m sin(2πf ∗mtn) + εi(tn).
(15)

The parameter a*1 is known as activity strength parameter, and it constitutes the strength of the
haemodynamic response function. It is quite logical that larger values of a*1 indicate higher
functional activity, whereas null values of a*1 represent no activation. Similarly, negative values
of a*1 indicate deoxygenation states. It is important to verify the obtained results through
statistical measure [55]. To achieve that, let us define a null hypothesis:

H0 : a∗1 = 0. (16)

The corresponding t-value with p-value < 0.01 is obtained as follows:

tvalue =
a∗1 − 0
SE(a∗1)

, (17)

where SE is the standard error of the estimated coefficient.

2.9. Estimation of inter-channel gap’s activation

In fNIRS data analysis, it is more important to exploit the particulars from both temporal and
spatial variabilities to anticipate the missing values. Here, we consider the following model for
oxy-fNIRS signal:

yi(N)
Hbo2
(xi, yi, zi, tn) = yi∗

Hbo2 (xi, yi, zi, tn) + Λi(xi, yi, zi, tn), (18)

where ỹi∗
Hbo2 (xi, yi, zi, tn) is the optimal estimated activation, and yi(N)

Hbo2
(xi, yi, zi, tn) is the real

neuronal activation-related signal with Λi(tn) Gaussian noise, which has a very low amplitude,
given that ỹi∗

Hbo2 (xi, yi, zi, tn) represents the optimal activation signal. Because of this Gaussian
noise, it could still have a certain mismatch with the actual haemodynamic response. As
an optional step, it is passed through a minimizing criterion that balances the fidelity of
yi(N)

Hbo2
(xi, yi, zi, tn), if it exists [56].

Let us define a norm representing residual of sum of squares of optimal HRF and mismatch of
the actual neuronal-related response, as follows:

F[yi∗
Hbo2 (xi, yi, zi, tn)] = | |yi∗

Hbo2 (xi, yi, zi, tn) − yi(N)
Hbo2
(xi, yi, zi, tn)| |2,

+ s∇2[yi∗
Hbo2 (xi, yi, zi, tn)]

(19)

where | | | | is the Euclidean norm, ∇2 is the Laplace operator (penalty term) that reflects the
missing values of the signal, and s is a real positive scalar that controls the degree of measuring
the best estimate of yi∗

Hbo2 (xi, yi, zi, tn), and

P[yi∗
Hbo2 (xi, yi, zi, tn)] = | |Dyi∗

Hbo2 (xi, yi, zi, tn)| |2, (20)

where D is a diagonal square matrix defined in [56]. From the aforementioned equations,
minimization of fidelity F[yi∗

Hbo2 (xi, yi, zi, tn)] defined in Eq. (19) gives the following system that
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allows the determination of the best estimated value:

[Iq + sDTD]yi∗
Hbo2 (xi, yi, zi, tn) = yi(N)

Hbo2
(xi, yi, zi, tn), (21)

where Iq is the q × q identity matrix, and DT is the transpose of D. To solve this equation, we
diagonalize D by using eigenvalue decomposition [57], which results in the following eigenvalues
of D:υi = −2 + 2 cos

[
π(i−1)

n

]
. Thus, Eq. (21) becomes:

yi∗
Hbo2 (xi, yi, zi, tn) = UXUTyi(N)

Hbo2
(xi, yi, zi, tn), (22)

where X is a diagonal matrix defined as

X =


0, nondiagonal elements(
1 + s

3∑
i=1

(
−2 + 2 cos

[
π(i−1)

n

] )2)
, diagonal elements

 . (23)

Here, we can say U and UT are discrete cosine and inverse cosine transform matrices [57],
respectively. In 2012, Wang et al. [58] analysed that the parameter s is the degree of smoothness.
It is found that a small value of s could reduce the effect of smoothness. The authors further
analysed that a high value of s results in larger global error and loss of high-frequency components.
The best value of s can be evaluated through generalized cross-validation (GCV) method [59,60]:

GCV(s) =
q
[
| |ỹi

Hbo2 (xi, yi, zi, tn) − yi
Hbo2 (xi, yi, zi, tn)| |

2
]

[q − Tr(H)]2
, (24)

where H(s) = (Iq + sDTD)−1 and Tr is the matrix operation trace.

3. Results

Figure 1 presents the experimental paradigm in detail. The task sessions are highlighted with
yellow bars. The duration of each task session is 10 s, which is then followed by a 30 s rest session.
Five trials of coupled task–rest sessions are performed, with initial rest of 10 s. Thirty seconds of
rest session is chosen to ensure that no activity-related haemodynamic response remains in the
HbO2 signal.

The total time of experiment was approximately 4 min, and this did not result in any feelings of
headache for any subject. The details of optode configuration and localization are shown in Fig. 2.
In this experiment, a single source is used with 3 layers of rectangularized detector positions
with spacings of 0.5 cm between them. Therefore, the channels are formed with source–detector
separations of 2.5 cm, 3 cm, and 3.5 cm. Each layer contains 8 detectors, and therefore 24
channel locations are scanned for right-index-finger-tapping task. The left hemisphere around C3
(International 10–20 system) is scanned at 24 sparse locations to comprehensively analyse the
task-related haemodynamic response. Figure 3 presents the generic schematic of the study. fNIRS
signals are measured from the nine subjects. Measured optical data are a linear combination of
hemodynamic signals, physiological noises, and certain artefacts. The artefacts and unwanted
noises have been removed through NIRS-SPM software and method described in Kamran et al.
[47,61]. The optimal activity-related signal is then fed into the inter-channel gap’s estimation,
and multi-layered 3-D activation patterns are determined and shown.

Figure 4 visualizes the conventional t-maps (in reference to Eqs. (16) and (17)) related to the
strength of activity. Because the signals are observed at 24 sparse locations, 24 locations of
activity patterns have therefore been displayed in each subfigure of Fig. 4. There are no data
available in between and around those channels, and therefore most of the area has no activity
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Fig. 3. Schematic of study: The complete process, from travelling of NIR light photons (with
physical behaviour of scattering and absorption in brain) to generation of 3-D high-quality
brain images, with slices, by the proposed algorithm. The processing steps of fNIRS data
acquisition and physiological noise removal for extracting optimal oxygenation signals have
also been illustrated.

information. To determine these inter-channel locations, the easiest way is to calculate the
weighted average of a specific activity pattern, depending on the locations. The corresponding
maps with weighted average are shown in Fig. 5. It is very important point to observe that
there is no depth information in these maps either evaluated via conventional methodology
(Fig. 4) or determined through further processing, i.e., weighted average (Fig. 5). The rest-related
functional brain maps are shown in Fig. 6. It is evident from this figure that almost all of the
area is inactivated, because the motor-related channels have shown no activity and inter-channel
locations already have no data. To determine the best fit of HRF from pre-processed optical data,
the data are fed through the optimization algorithm presented in Eq. (15). In this algorithm, each
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parameter of cHRF defined in Eq. (10) is allowed to be free. The algorithm chooses the best
value of these parameters, depending on the minimum error found in each step of iteration.

Fig. 4. Statistical t-maps of brain activation (without averaging) with fNIRS during finger-
tapping task for all subjects (left to right, respectively). The red-coloured circles show the
significantly active channels while relatively close to blue-coloured circles, which show
deactivated channel locations. The channel numbers are also displayed at each location. The
colour bar (at the bottom-right) shows activity strength.

Figure 7 presents the results for the 9 subjects, from the most active channels on each subject,
with actual oxy-data shown in blue colour and corresponding best fit shown in red colour. It
is evident from Fig. 7 that the algorithm determined the best HRF with minimum error. The
main concept of channel localization related to optode configuration is shown in Fig. 8. Let us
consider a source (red cylinder) and a pair of detectors (grey cylinders). The NIR light path in
between the source and each detector is supposed to be banana-shaped, with a depth of 50% of
inter-source–detector distance. Suppose the second detector is placed 1 cm away from the first
detector. Its corresponding channel shall be positioned near the first channel location with a
depth difference of 0.5 cm. The two locations of the channels are shown with purple and blue
circles, respectively, with a radial distance of z between them. Different layers of the head (scalp,
skull, white matter, and grey matter) are shown in black-coloured lines. The scattered light that
does not reach any detector is shown in green colour.
The 3 rectangular layers forming 24 channels and their corresponding depth differences

from bottom (Z= 1) to top layer (Z= 21) and inter-layer (Z= 11) are shown in Fig. 9. The
algorithm to estimate inter-channel activity-related patterns is shown in Fig. 10. The output of
neuro-activation model is passed through the basic step to estimate the value of s depending
on the minimization of GCV scores defined in Eq. (24). The next step is the determination of
discrete cosine transform (DCT) of matrix X defined in Eq. (23). Finally, the inter-channel gap’s
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Fig. 5. Statistical t-maps of brain activation with fNIRS during finger-tapping task for all
subjects (left to right, respectively). The channel locations are displayed as text numbers.
The more activated areas and the channels are displayed in red colour, while the activity of
inter-channel locations are estimated through weighted average scheme. The colour bar (at
the bottom-right) shows activity strength.

activity-related waveform is estimated through inverse DCT (IDCT). This algorithm evaluates
an activation value corresponding to each voxel and at each time step. Figure 11 presents the
results related to a rectangular cube shown at motor cortex, with three axes labelled X, Y, and Z.
The local origin is shown as O(0, 0, 0). 3-D brain maps are generated for the whole rectangular
cube at each voxel through 24 channel-location data observed at 3 rectangular layers, as shown
in Fig. 2. The results corresponding to some of the slices related to these rectangular cubes
are shown in magnified part 1 (X= 53, X= 105, Y= 160, Z= 1 and Z= 11) and part 2 (X= 53,
X= 105, Y= 160, Z= 1, Z= 11 and Z= 21).

To show the best resolution results with depth, the 3-D map’s specific layer activation patterns
related to Z= 21 are shown in Fig. 12. Similarly, the results for depth activation maps related to
Z= 11 are shown in Fig. 13 for six subjects and are estimated through the proposed algorithm. In
addition, for better view and understanding, the results related to different layers (Z= 1, X= 53,
X= 105, Y= 80) are presented in Figs. 14–17.
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Fig. 6. Statistical t-maps of brain activation with fNIRS during rest for nine subjects (left
to right, respectively). The channel locations are displayed as text numbers, with the blue
colour showing no activity. The colour bar (at the bottom-right) shows activity strength.
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Fig. 7. Typical temporal waveforms of concentration changes in HbO2 in different channels
of each subject during the finger-tapping task. The real fNIRS data are represented by
the blue-coloured waveform, while the estimated activation signal is represented by the
red-coloured signal. The x-axis shows time, while the y-axis shows the relative concentration
changes with arbitrary units.
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Fig. 8. Concept of measuring two supposed points (A and B) in brain with z distance
apart, by shooting NIR light from source and detecting the NIR light from two detectors.
The banana-shaped paths depict the travelling area of the NIR light photons, while the
green-coloured arrows indicate the scattering. The red-coloured arrows show the extra
distance travelled by photons, which is corrected by differential pathlength factor (DPF),
while the black lines indicate the layers of the head.
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Fig. 9. Concept of the existence of channels at different layers of a supposed activated
region, according to their distance from the source. The nearest channels lay at the top layer,
the channels after that lay a little bit deeper at the middle layer, while the channels at the
end of the configuration lay at the bottom layer of the activated region. The depth of the
middle layer is 0.25 cm, making the region for analysis have dimensions of 0.5 cm × 1.5 cm
× 1.5 cm.
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Fig. 10. Flow chart of algorithm.
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Fig. 11. Sample figure of 3-D automatic estimation measured by proposed algorithm with
different layers for subject 1. Layer-wise estimation for six subjects (1, 2, 4, 6, 8, 9) are
shown in the next figures separately. (a) Pixel-wise automatic filling of activation gaps with
different layers at X= 53, X= 105, Y= 161, and Z= 11. (b) Top view of activation at Z= 21.

Fig. 12. Functional image of a particular slice at Z= 21 (top layer) separated from 3-D
image acquired through proposed scheme shown in Fig. 11. This image includes activation
related to only those channels which lie on the top layer of Fig. 9; activation related to other
deep channels are not shown in this layer. The dark red colour shows the most activated
areas with high resolution.



Research Article Vol. 10, No. 9 / 1 September 2019 / Biomedical Optics Express 4702

Fig. 13. Functional image of a particular slice at Z= 11 (middle layer) separated from 3-D
image acquired through proposed scheme shown in Fig. 11. This image includes activation
related to only those channels which lie on the middle layer of Fig. 9; activation related to
other channels are not shown in this layer. The dark red colour shows the most activated
areas with high resolution.

Fig. 14. Functional image of a particular slice at Z= 1 (bottom layer) separated from 3-D
image acquired through proposed scheme shown in Fig. 11. This image includes activation
related to only those channels which lie on the bottom layer of Fig. 9; activation related to
other channels are not shown in this layer. The dark red colour shows the most activated
areas with high resolution.
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Fig. 15. Functional image of a particular slice at X= 53 separated from 3-D image acquired
through proposed scheme shown in Fig. 11. This image includes activation related to only
those channels which lie on X= 53 layer; activation related to other volume is not shown in
this layer. The dark red colour shows the most activated areas with high resolution.

Fig. 16. Functional image of a particular slice at X= 105 separated from 3-D image acquired
through proposed scheme shown in Fig. 11. This image includes activation related to only
those channels which lie on X= 105 layer; activation related to other volume is not shown in
this layer. The dark red colour shows the most activated areas with high resolution.
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Fig. 17. Functional image of a particular slice at Y= 80 separated from 3-D image acquired
through proposed scheme shown in Fig. 11. This image includes activation related to only
those channels which lie on Y= 80 layer; activation related to other volume is not shown in
this layer. The dark red colour shows the most activated areas with high resolution.
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4. Discussion

Among OBI methodologies, fNIRS is at a favourable position in the examination of human neural
activation. This feature attracts several researchers working in the design field into developing an
advanced instrument for fNIRS. However, there are still several issues that need attention and
research, e.g., sensitivity, depth accuracy, and spatial resolution [3]. DOI can possibly attain a
spatial resolution of a few centimetres but decreases instantaneously with increasing depth in
the brain [62]. These methodologies use non-overlapping probe configurations and thus have
a spatial resolution no better than the centimetre scale [3]. Importantly, in terms of the depth
axis, the spatial resolution in adult humans is inferior because of the hardness of the skull and
the distance between source and detector (< 4 cm) [63]. In new-born babies, it is possible to
enhance the depth resolution by measuring the transmission of NIR light; however, in adult
humans, this is generally not possible [64]. The information gathered through fNIRS optical
signals is converted into interpretable form through functional brain image. In reality, the basic
idea (Fig. 8) is that the NIR light of dual wavelength is thrown on the scalp by the source (red
cylinder). Let us assume we have configured two detectors (grey cylinders). Two channels formed
as a result of this configuration having banana-shaped paths, which indicate the activation pattern
at positions A and B, respectively, with a radial distance of z. The spatial coordinates of A and B
are now supposed to be the half of the source–detector separation (depth-wise) and a midpoint of
the banana-shaped path horizontally. Conventionally, the information acquired through several
channels could be displayed through 2-D functional image maps (t-maps). irrespective of depth
information, as shown in Fig. 4. Only the channel locations have a specific activation pattern,
and remaining pixels/voxels have no information regarding functionality. A generic and simple
solution to this problem is to generate weighted-average activation information at the remaining
pixels, as shown in Fig. 5. This solves the problem; however, the depth information is missing.
and each of the channels at any depth location is cumulatively displayed on the 2-D pattern. The
estimation of activation at each pixel/voxel and at relative depth is the focus of this study.

To enhance the sensitivity of optical brain activation and the accuracy of HRF, the development
of signal processing methodologies that can discriminate the measured signals in time and space
is mandatory [20]. Barbour et al. have argued that optical tomography produce low-spatial-
resolution images and that artefacts and noises are expected with time-varying properties [65].
For time-varying reconstruction, Prince et al. have used space-estimation methodologies to
differentiate respiratory rhythm, brain activation signal, and cardiac pulsation [66]. For filtration
of systemic signal fluctuations from brain-activated optical data, Zhang et al. applied principal
component analysis to evaluate principal spatial components of spatio-temporal covariance of
pre-processed optical data [67–69].

Earlier, it was common practice to show brain maps through activation points and smoothing
the data along the 2-D axis, as published by Franceschini et al. and Maki et al [70,71]. The
resolution is comparable to source–detector separation, and quantitative accuracy is compromised
because the obtained image is not an optimal solution of the inverse problem [72]. However,
if we look at Fig. 5, we can see the simple averaging results of the data displayed in Fig. 4.
However, from these figures, no one can estimate or determine the depth of these activation
and the corresponding strength of activation on those layers (depth). It is evident from Fig. 11
that not only activation is estimated but its depth-related relative activation has been found
and displayed. This is a novel approach and would be beneficial specifically for the fNIRS
community and, in general, for OBI. There are only a few published examples of DOT images
of brain haemodynamics, for example, in rodents [30,73], in new-born human babies [74], and
in adult humans [38]. The advancement of true DOT for brain activation in humans would
improve the image spatial resolution and quantitative accuracy over that of current interpolating
back-projection methods.
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The intensity of NIR light is fundamentally known to gradually decrease as the source–detector
separation increases [63]. Additionally, the amplitude of the sensitivity, which bridges between
the optical characteristics inside the skull and the intensity of the light received, is highly
non-uniform in the reflectance measurement [16]. Therefore, this amplitude would be strong
in the neighbouring locations of the source but weak in the deep layers. This situation leads
towards the reconstruction of the image. In this study, we have 24 distinct activation points at
different depths, depending on source–detector separation. However, there are no absolute or
relative data available that indicate or estimate the haemodynamic response at those locations.
It is nonetheless quite logical that activation of a healthy human brain would be very smooth
around the strong activation area until and unless there is no other strong activation point in
the neighbouring area [20]. Thus, reconstruction of a volume of cortical surfaces based on
distinct and different 3-D points could result in better 3-D activation maps. In the past, different
algorithms have been presented for such activation maps, e.g., regularization algorithms [75,76],
among them is the popular method Tikhonove regularization, which is also known as L2-norm
regularization [77]. It is used frequently because of its ease of implementation and robustness of
solution. The limitation of this algorithm is that the L2-norm penalty results in an over-smooth
solution. On the other hand, in the proposed algorithm, the activation between two activity points
have been estimated based upon the value of smoothness parameter s.
If we analyse the source–detector-configuration-forming channels (Fig. 9) of this study, the

channels are localized at 3 layers forming three xy-planes, following the concept drawn in
Fig. 8. Each layer has 8 channels (with respect to the source–detector separation), and distance
between each layer is 0.25 cm, with the top-layer channels at approximately 1.25 cm depth. The
particular pixels missing in each layer are estimated through the proposed algorithm, resulting in
an enhanced image of each layer. Further, inter-layered pixels have been estimated through the
proposed algorithm, forming an enhanced and improved version of 3-D functional brain maps
and having voxel information at each location of specific 3-D cube with high resolution.

We applied the proposed algorithm on the 9 subjects, with the results for 6 of these subjects (1,
2, 4, 6, 8, and 9) having been shown. If we closely look at Fig. 11 in comparison with Fig. 4, the
former represents the brain maps (for the respective randomly selected subjects) of each layer in a
specific volume, which cumulatively have patterns similar to those displayed in Fig. 4. Therefore,
the proposed algorithm would be beneficial to the fNIRS community for localizing depth-wise
brain activation. In addition, different volume layers in the xy-, yz-, and xz-planes of specific
locations are presented in Figs. 12–17 with higher activation pixels. It can be easily observed
in Fig. 12 that all randomly selected subjects have most of the activated channels in the first
layer at around reference point C3 of the specific volume (Fig. 11) because of the finger-tapping
task and specific configuration. Meanwhile, some of these subjects (4, 6, 8, and 9) also have
channels activated in the second layer. In Fig. 13, we can clearly see those active channels in
a particular location (i.e., second layer) for respective subjects. Additionally, only subject 9,
in contrast with other subjects, also has one channel active in the third layer. This additional
activation is displayed in Fig. 14. The remaining Figs. 15, 16, and 17 show different views of
activated channels of specific volume with respect to different layers at X= 53, X= 105, and
Y= 80, respectively, for better understanding. Based upon the observations made in this study, it
is therefore in the interest of time that, instead of projecting 2-D cumulative images of functional
activation, a better approach would be to display an enhanced layer-wise image to infer correct
information. It is worthy to mention that some of the subjects have shown activation in areas near
C3, for example, as shown in Figs. 4 and 5 (subjects 4, 5, 6, 8, and 9). However, because only one
source has been utilized in our configuration (Fig. 2), limited activation points are detected. This
issue could be improved by using high-density probe configuration. Another important aspect is
that, because the results are obtained for different brain-layer slices, limited areas are activated,
depending on the activation signal observed at each layer.
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5. Conclusion

In this study, a novel algorithm to enhance the spatial information of cortical activity has been
proposed for OBI. To the best of our knowledge, this is the first study that estimates inter-channel
brain activation with high resolution. The proposed algorithm measures/determines the activation
of inter-channel based on the neighbouring response of optical imaging data. The algorithm is
based on the minimization of GCV scores and inverse discrete cosine transform. The results
show that brain-functionality information with high resolution, including depth information, is
achieved, in contrast with existing methodologies. Statistical analyses have also been implemented
for the validation of brain-functionality results. The full 3-D brain map is made possible by
implementing the proposed strategy and collecting cortical signals through a full head scan. This
enables an individual to view the brain response of a particular slice through OBI data, as one
can view through fMRI.
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